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LETTER TO THE EDITOR 

Criticality of ionic fields: the Ginzburg criterion for the 
restricted primitive model 

R J F Leote de Carvalho and R Evans 
H H Wills Physics Laboratory, University of Bristol. Bristol BS8 ITL, UK 

Received 19 July 1995 

Abstract A Cinzburg criterion is employed to esnmnte the extent of the critical region for 
the restricted primitive model (RPM) of an ionic fluid. Mean-field critical amplitudes are 
calculated using the generalized mean-sphencai approximation (GMSA) and other recently 
proposed theories. The resulting (reduced) Ginzburg temperature tc is large and similar to 
that calculated for models of a one-component neutrd fluid. This implies that crossover from 
mean-Keld to Ismg-like cntical exponents should not be expected for the RPM The relevance 
of these results for the criticality of real ionic fluids is discussed. 

Criticality of the liquid-vapour transition is generally assumed to be in the k ing  universality 
class, since the order parameter for this transition is simply the difference in coexisting 
densities, i.e. a scalar. Accurate measurements for atomic and molecular fluids, including 
water and liquid metals, always yield Ising-like critical exponents [1,2]. Mean-field 
(classical) exponents are not observed and any crossover to mean-field behaviour occurs 
so far from the critical point that power laws cannot be fitted. In such systems the effective 
interatomic or intermolecular forces are sufficiently rapidly decaying with distance that 
king-like behaviour is expected. For ionic fluids one might suppose that the long-ranged 
character of the Coulomb forces between ions could give rise to a different universality 
class. namely one with mean-field exponents. The counter argument to this idea is that 
counter-ion screening always occurs in a conducting system and, provided the corresponding 
screening length remains finite, criticality should still be Ising-like. Experimental work by 
Pitzer and co-workers 131 and by other groups [4,2] showed that for a certain organic 
salt in a non-aqueous solvent the liquid-liquid consolute behaviour was mean-field-like for 
reduced temperatures Ifl, where f = (T - T c ) / c ,  as low as More recent turbidity 
measurements for a picrate salt in a series of non-aqueous solvents indicate that crossover 
from king to mean-field exponents increases from f, - (3-8) x IO-.' to - ( 1 3 )  x IO-* as 
the dielectric constant of the solvent is increased from 4.6 to 9.4 [5 ] .  In such systems the 
extent of the critical region appears to be orders of magnitude smaller than in neutral fluids. 

Understanding the nature of criticality for an ionic fluid poses a severe challenge to 
the theorist. The admirable reviews by Fisher [6] and Stell [7] summarize the key issues 
and describe what (little!) progress has been made. Most attention has been focused 
on determining the liquid-gas coexistence curve of the restricted primitive model (RPM), 
where the ions are modelled by equisized charged hard spheres of diameter a immersed in a 
structureless dielectric medium with dielectric constant E .  The pairwise potentials between 
ions are r$,j(r) = M, for r < a and & ( r )  = ZtZjeZ/er  for r > a ,  with Z+e = - Z - e  
denoting equal and opposite charges and i, j referring to ionic species. Stillinger and 
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Lovett [SJ first asserted that the RPM should show liquid-gas phase separation with its 
accompanying critical point. Recent computer simulations have confirmed that the model 
does exhibit coexistence between a very dilute vapour and a dense ionic liquid with the 
latest estimate of the critical point being T,‘ zz 0.053 and p,* c 0.025 [9J. The dimensionless 
parameters are defined by I / T *  G ,P F ,9(.Z+e)’/ca and p’ IjksT and 
p is the total number of ions per unit volume. Another Monte Carlo study finds, contrary 
to earlier results, that the vapour phase close to saturation is conducting and concludes 
that the RPM is likely to be a conductor throughout the fluid phase [IO]. None of the 
simulations yield sufficient reliable data to allow estimates to be made of critical exponents. 
Several theories have been developed for the thermodynamic functions and the structure of 
the RPM-and there have been many recent attempts to improve upon earlier approaches 
by including ion pairing. Much of this work is reviewed in [6.7]. The theories which 
predict two-phase coexistence are all mean-field approximations and hence cannot account 
for Ising-like criticality-were this to be the correct behaviour for the RPM. 

Our aim here is not to develop a theory which provides a more accurate estimate of the 
location of the critical point. Rather we consider a well-established theory of the RPM, the 
generalized mean-spherical approximation (GMSA), and determine the extent of the critical 
region using a Ginzburg [I 1 J criterion. We compare our result with that obtained from 
the DebyeHuckel (DH) approximation and with those from some other recent treatments 
of the RPM. Comparison is also made with results for a square-well fluid, modelling a 
simple neutral fluid, treated in the random-phase approximation (RPA). We find that h e  
Ginzburg (reduced) temperature of the RPM is rc - I ,  a value very similar to that for the 
square-well fluid. This implies that the critical regions for both models have a similar large 
extent. The results suggest that the RPM may have limited usefulness as a model system 
for understanding the criticality of real ionic fluids and we discuss its limitations. 

Our reasons for choosing the GMSA for the analysis are threefold: ( i )  this is the 
simplest thermodynamically self-consistent integral equation approach for the RPM; (ii) 
correlation functions are given rather accurately; and (iii) unlike other integral equation 
closure approximations, such as the widely used hypernetted chain approximation (HNC), 
which fail to give a proper account of two-phase coexistence [12], the GMSA does yield 
a realistic, albeit mean-field, coexistence curve with accompanying spinodals 113, 141. The 
GMSA was first introduced for ionic and polar fluids by H ~ y e  er al [IS]. Subsequent 
workers [16. 171 laid out the procedure for determining the physical solutions to the self- 
consistent equations. The theory is defined by the equations 

pa3 where ,!3 

hi i ( r )  = -1 for r c a (1) 

and 

(2) 
K exp(-i(r/a - I ) )  

r/a 
c&) = -B@i,(r) + for r > a 

along with the (exact) Ornstein-Zernike equations for a binary mixture. Here h,,(r) is 
the total pairwise correlation function and c,,(r) is the direct correlation function between 
species i and j .  Equation ( I )  is a statement of the exact hard-core exclusion condition. 
The approximation resides in the Yukawa form assumed for cij(r) outside the hard core. K 
and i are both (positive) functions of p and T, and are chosen so as to ensure consistency 
among the three routes to thermodynamic functions obtained from hi]@), i.e. the virial, 
compressibility and internal energy routes. The procedure developed in [16] is valid 
everywhere in the mechanically stable region where the compressibility is positive. It fails in 
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the unstable region, between the spinodals, where i becomes complex. However, since the 
Helmholtz free energy in the GMSA is simply the Carnahan-Starling hard-sphere free energy 
plus the free energy obtained from the MSA internal energy, this has a conventional mean- 
field form. Below T, i t  has a van der Waals loop for the resulting pressure p ( p )  and chemical 
potential ~ ( p ) .  Spinodals are readily calculated and liquid-vapour coexisting densities can 
be determined very accurately using the standard procedure of equating chemical potential 
and pressure in the two phases. It follows that the order parameter critical exponent p = $. 
The critical amplitude B is defined by Ap/p, - Bjtlfl for I < 0. Here A p  (pl - p,)/2, 
where pi(T) and p,(T) are the coexisting densities. The calculated value of 5 is given 
in table 1. The critical point was determined in two ways: (i) by locating the maximum 
of the coexistence curve; and (ii) by working in the single-phase region and ascertaining 
the highest temperature at which e- ' ,  the inverse correlation length for fluctuations in 
the total number density, vanishes (see below). Both methods yield, within numerical 
accuracy, T: = 0,0785769677 and p: = 0.014485. The GMSA critical temperature is 
about 50% higher than in simulation and the critical density is about 60% of the simulation 
value. Other thermodynamic critical exponents and amplitudes are easily obtained. The 
compressibility KT diverges as p ~ ~ / p  - C*ltl-Y. with y = 1. C+ refers to t > 0 and 
C- to t < 0 (along the coexistence curve). The calculated ratio C+/C- = 2.00, which is 
the standard mean-field value of the amplitude ratio. Along the critical isotherm ( t  = 0), 
pC(@-pc) - D((p-p , ) /p , )* ,  with 6 = 3 and the value of the critical amptitude D is given 
in table 1. Calculations were carried out sufficiently close to the critical point, typically in 
the range lo-* < IT* - T;I < to ensure that accurate 
power-law fits could be made to the numerical results. 

and < /p* - p:l < 

Tahle 1. Meat-field critical amplitudes for various model fluids. LG refen to the lattice gas, 
vdW to the van der Waals equation of state and RPA to the random-phase approximation for a 
squwe-well fluid. The remaining resulll refer to the RPM treated in the npproximations descnbed 
in the text. DH and DHBj results are taken from [19,20]. The correlation lengih amplrtude 6: 
is only wailable far four of the theories. 

B C+ D G f a  
LG 1.7321 0.5 0.6667 
vdW 2 0.4444 0.564 
RPA 2.447 0.3648 0.460 0.406 
GMSA 6.904 0.8958 0.02342 0.75 
DH 6.9282 I 0.02083 0.7329 
DHBj 0.7617 0,10994 15.6773 0.7329 
PMSAl 5.071 0.7177 0.05597 
PMSA2 5.286 1.0600 0.03486 
PMSA3 5.448 1.0645 0.03491 

Before discussing the Ginzburg temperature it  is necessary to describe the picture of 
criticality which emerges in the GMSA treatment of the FWM [14]. The fluid is driven 
critical by fluctuations in the total density, i.e. the density-density total correlation function 
h , ( r )  = f ( h + + ( r )  + h + - ( r ) )  has a diverging correlation length ( at the critical point, 
but charge correlations remain non-critical and hD(r) i(h++(r) - h + - ( r ) )  has a finite 
correlation length. The Ornstein-Zernike equations for the Fourier transforms &(q) and 
iD(q )  have independent pole structure [14]. In the critical region the dominant pole of 
LJq) is pure imaginary icy: and rh?(r )  - ARexp(-r/() as r -+ CO, with (-' cy{. 
cy: = 0 defines the critical point and the spinodals. On the other hand, the dominant 
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poles of i.014) are a conjugate pair -+a? + iaf, so damped charge oscillations are 

numerical results for the charge pole at the critical point yield the values aaf = 2.13232, 
aap = 1.26246 and Be = 0.661 64, i.e. the charge correlation length 1/af is short. - a / 2 ,  
while the wavelength of the oscillations 27r/ap is long, - 5a. In this theory the charge 
correlations have no direct influence on the criticality. Their role is to determine, through 
the imposition of thermodynamic consistency, the indirect attraction that is necessary to 
drive the density-density correlations critical. This is achieved by imposing identical 
Yukawa tails (see (2)) on c++(r) and c+-(r). We would expect other self-consistent closure 
approximations to yield a similar picture of criticality [7] but we are not aware of any 
explicit results. It follows that within the GMSA, at least, the Ginzburg criterion should 
refer to correlations in the total density. The criterion is, therefore, equivalent to that for a 
single-component fluid. 

present: rhD( r )  - A p  exp(-ufr)cos(al e r + B e )  in the vicinity of the critical point. Our 

If we define the densitydensity correlation function as 

Gs(ri9 72) ((~(ri) - ( ( P ( T ~ ) ) ) ( P ( ~ ? )  - (P (Q) ) ) )  (3) 

where ( ) denotes a configuration average, then G , ( r )  = p2h,(r) + pS(r),  for a uniform 
fluid of average density p .  The integral Ginzburg criterion [ IS]  requires us to consider the 
dimensionless ratio 

where the integrals are taken over a correlation volume Vl,  for slightly subcritical 
temperatures. The correlation length, calculated along the coexistence curve, divergcs as 
{ = &ltl-", t < 0 (our numerical results confirmed that U = f is the mean-field value). 
Note that the numerator in (4) is the integral of the mean square fluctuation of the density 
(order parameter) on length scales up to e .  As It1 -+ 0, -+ CO , and we approximate 
the integral by its value over all space and employ the sum rule [drG,?(r) = p ' ~ r / , 9 .  
The denominator in (4) is the integral over the same volume, of the square of the order 
parameter A p ,  which is simply 4 7 ~ S ~ ( A p ) ~ / 3 .  Mean-field theory should be valid provided 
the numerator is much smaller than the denominator, i.e. fluctuation effects are small 
provided 

Using the mean-field critical exponents and amplitudes this condition can be expressed as 

or 

which defines the Ginzburg temperature tc. Other Ginzburg criteria, which give rise to the 
same ratio of amplitudes but different numerical factors in (7). can be defined but we feel 
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that (4) is the most appropriate ratio for a fluid; we return to this point in the discussion. 
The correlation length amplitude c; was obtained from the imaginary (density) pole CY$ 

calculated along the coexistence curve. For f > 0, 6 = tzf-‘’z and the calculated ratio 
<:/6; 0 1.41, in agreement with the standard mean-field value A, The GMSA result for 
5; is given in table 1. Our GMSA estimate of the Ginzburg temperature is fG % 1.08. 

It is important to ask how sensitive IC is to the choice of mean-field theory. Levin and 
Fisher I191 have obtained critical amplitudes for thermodynamic functions, and Lee and 
Fisher [20] have obtained correlation length amplitudes in the Debye-Hiickel approximation 
(DH) [21] for the RPM, and their results are listed in table 1. It is remarkable that the DH 
approximation, which is based on a much cruder treatment of short-ranged correlations, 
should yield amplitudes that are ratlier close to those from the GMSA. However, since the 
critical density p; is almost a factor of three smaller than the GMSA value (p: = 1/(641r), 
T; = & in DH) the resulting tc is about eleven times larger for DH. Table 1 also lists the 
critical amplitudes calculated in [19.20] using a modification of DH which includes some 
Bjerrum ion pairing (the DHBj of [21]). These amplitudes are completely different from the 
DH and GMSA results. Note that DHBj yields an unrealistic ‘banana’-shaped coexistence 
curve [Zl]. GonzAlez-Tovar and Outhwaite [22] have calculated the critical point of the 
RPM (and of an asymmetric model with an ionic size ratio of 2 1 )  using the modified 
Poisson-Boltzmann (MPBj and symmetric Poisson-Boltzmann (SPB) theories. The critical 
densities p,‘ are lower than in the GMSA. i.e. further from the simulation value, but T; is 
slightly better than the GMSA value. Their calculated order-parameter critical exponent is 

amplitude B 0.65 (SPB) is an order of magnitude smaller than the 
GMSA and DH results of table 1. The authors do not report critical amplitudes for other 
quantities. 

The MSA and, therefore, the GMSA treats hard-core repulsion rather accurately but does 
not properly take into account effects of ionic association. Recent simulation studies of the 
RPM [23] and of a Fumi-Tosi model of NaCl [24] confirm that pronounced association, into 
pairs, triplets and higher-order clusters, occurs for low densities and temperatures. Zhou er 
a[ [25], following earlier work by Zhou and Stell [26], have analysed improvements to the 
MSA which include contributions to the equation of state arising from unlike ionic pairs at 
contact. Three versions of this pairing MSA (PMSA) are described. PMSA I ,  the simplest 
version, neglects the activity coefficient of the fully associated ion pairs. PMSA 2 includes 
the activity of these dipolar particles at the MSA level while PMSA 3 includes the effects 
of the dipolar particle (hard-dumbbell) cores. As the critical points (especially the critical 
densities) calculated from these theories are considerably closer to the simulation estimate 
than the GMSA result 1251, it is of interest to investigate the magnitude of tc for these new 
approximations. The pressure p(p)  and chemical potential p(p)  are given explicitly for all 
three theories [25], i.e. in each case the MSA equation of state is augmented by an ion- 
pairing contribution which depends on the association constant K O ,  Van der Waals loops are 
obtained, leading to mean-field coexistence and criticality. We made accurate determinations 
of the critical points and the thermodynamic critical amplitudes using the same numerical 
procedures as for the GMSA. The results for the critical density and temperature are given 
in  table 3 and those for amplitudes in table I .  The amplitudes were extracted using datat 
in the range and IO-? < I(p - p,)/p,l < IO-’. Their values, for 

t Note that KO is given by a series expansion in powers of B’ (see equation (2.13) of 1251). The series w u  
truncated when the ratio ofthe mth term to the sum of the first m terms was smaller thm Although this WZLS 

shown to be sufticiently m u r u e  for our purposes. the truncation might be the cause of the small discrepancies 
between the calculated values of D C I  and B-’ given in table 1 for the PMSA results. 

p = ’  *, within the accuracy of the power-law fitting, However, the corresponding critical 
0.56 (MPB) and 5 

< / f j  4 



L580 Letter to the Editor 

Table 2. The coefficients entering the LGW Hamiltonian (IO) for various model fluids 

..PC u u A  P h  
LG 2 0.1667 
vdW 2.25 0.1406 
RPA 2.14 0.115 0.452 
GMSA 1,116 0.005855 0.627 
DH I 0.005 2083 0,5372 
DHBi 9.09573 3.91932 4.8857 
PMSAl 1.393 0.01399 
PMSAZ 0.9434 0.008715 
PMSA3 0.9394 0.008728 

all threc versions of the PMSA, are similar to those obtained in the GMSA and Debye- 
Huckel approximation. Since there is no procedure for calculating correlation functions in 
the PMSA we estimated fc using 5; obtained from our GMSA calculations. Thc results 
are collected in table 3 .  PMSA 1 yields a r~ that is a little smaller than the GMSA value, 
whcreas the PMSA 2 and PMSA 3 values are somewhat higher. However, all four estimates 
agree to within a factor of two and we conclude that for the RPM tc - I .  

If we accept this conclusion we should then enquire whether this value is substantially 
different from the corresponding estimate for a neutral fluid. To this end we calculated the 
critical point and critical amplitudes for the square-well fluid, described by the pairwise 
potential 

+ ( r )  =CO r < U  

+ ( I )  = -6 a < r < 3a/2 (8) 
@ ( r )  = 0 r > 3a/2 

with a the hard-sphere diameter, using the RPA, i.e. the direct correlation function was 
approximated as 

cfr) = C h d r )  - B A r r ( r )  (9) 

and the attractive potential +arl (r )  was taken to be --E for r c 3a/2 and zero otherwise. 
The Percus-Yevick approximation was used for the hard-sphere Chr ( r ) .  Thermodynamic 
functions were calculated from the compressibility route and the correlation length from 
the pure imaginaq pole of fz(q), obtained from the Ornstein-Zernike equation for a pure 
fluid. It is well known 127,281 that the RPA yields a reasonable (mean-field) coexistence 
curve and sinodals. The critical point can be determined anafytically and for the square- 
well fluid T: = ksT1-E = 1.2666781 22 and p,* = pca3 = 0.245735. Our results for the 
critical amplitudes. calculated by the same procedures as those used for the RPM, are listed 
in table 1. We verified that the numerical results from the RPA agree with the standard 
mean-field amplitude ratios. The thermodynamic amplitudes are considerably different from 
those obtained for the RPM but they are similar to the amplitudes calculated for the lattice 
gas (LG) and for the van der Waals (vdW) equation of  state-see table 1. It is clear that 
the values of the critical amplitudes do reflect the type of fluid. The correlation length 
amplitude, t ; /a, for the square-well fluid is about half that for the RPM. Again we obtain 
e;/&,- = A. In spite of the differences between the amplitudes, the calculated value 
tc zz 1.6 is similar to t!at obtained for the RPM. The size of the critical region in the 
neutral, square-well fluid is close to that estimated for the RPM of an ionic fluid. 
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The starting point for renormalization group treatments of critical fluctuations is usually 
the Landau-Ginzburg-Wilson (LGW) Hamiltonian. Using the results of microscopic liquid- 
state theories we can determine the coefficients in this Hamiltonian: 

where m ( r )  is the order-parameter density, A p  is its conjugate field, and we restrict 
consideration to three dimensions (d = 3). For a fluid we set m = (p - p,)/p,, and 
A p  p - p, .  where pLen(T) is the chemical potential along the coexistence curve. 
Minimizing (10) for a uniform fluid yields the standard mean-field exponents, and the 
critical amplitudes, defined previously, are: 

B = ( C Z O / ~ U O ) ' ~ ~  C" = (&%)-' D = 4uopc (1 1) 

Using~our  earlier results for B and C+, a0 and uo can be determined. The values 
are listed in table 2 for the various theories. Note that (11) implies the relationship 
DC+ = B-2 .  Our numerical results for the amplitudes do  satisfy this, which provides 
a further check on their accuracy. The order-parameter correlation function is easily 
calculated from (10) and the amplitude of the correlation length is $ = ( ~ / L z o ) ' / ~ .  Thus, 
the coefficient of the square gradient term can be obtained from the microscopic results 
for .$. Alternatively one can obtain F using the general result from density functional 
theory [29] pi. = (p /6 ) Jd r r2c ( r ) ,  with the direct correlation c(r) (or c,?(r) for the RPM) 
evaluated at the critical point. The same results are found from both schemes, attesting to 
the self-consistency and numerical accuracy of the calculations. i. takes on similar values in 
the GMSA and the DH treatments of the RPM and these are not substantially different from 
the RF'A result for the square-well fluid-see table 2. On the other hand, the coefficient 
of the quartic term in the Hamiltonian, uo. is 20 times smaller for the RPM, reflecting the 
fact that A p  on the critical isotherm has a much smaller amplitude. In terms of the Landau 
coefficients the Ginzburg temperature (6) transcribes to 

which may be a more familiar form. All the results for IG are summarized in table 3. 

Table 3. The Ginzburg temperatures f~ and critical pmeters for the square-well fluid treated 
in the RPA and for the RPM mated in the GMSA. DH and PMSA (the PMSA uses from 
the GMSA). 

T: P: IG 

SqW(RPA) 1.2667 0.2457 1.57 

GMSA 0.07858 0.01448 1.08 
DH 0.0625 0.004974 12.90 
PMSAl 0.07481 0.02502 0.80 
PMSA2 0.073 33 0.02293 1.76 
PMSA3 0.07452 0.02433 1.37 
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As mentioned earlier, other criteria have been employed to define a Ginzburg 
temperature or Ginzburg number Gi-see e.g. Anisimov er nl [30] and references 
therein. One choice 1301, based on the argument that thc fluctuation contribution to the 
compressibility in the onephase region should remain small, corresponds to Gi = rc/2, with 
tc given by (12). Clearly rc, or Gi, is very sensitive to the value of the correlation length 
amplitude (0, so it is important to calculate this consistently from the same microscopic 
theory which determines the thermodynamic critical amplitudes. (The value of Gi 0.01 
given in  1301 for a van der Waals fluid is obtained from a crude estimate of (t.) 

The main result of our analysis is that rc for the RPM taken on a similar value to that for 
a neutral square-well fluid. It follows that the critical regimc of both types of fluid should 
be large in extent and there is no crossover expected from mean-field critical exponents 
to non-classical exponents. If one were to use the LGW Hamiltonian (IO) to describe 
the RPM one would obtain (from a renormalization group perspective) king-like criticality 
with the critical regime extending to values of I f ]  that are similar to those observed for 
neutral fluids. From this viewpoint the RPM is no different from a one-component, atomic 
fluid and therefore cannot account for the crossover behaviour that is observed in real ionic 
fluids. Such a viewpoint has, as its basis, the notion that charge correlations, h D ( r ) ,  remain 
non-critical at the critical point. It is unlikely that this notion remains valid beyond mean- 
field theory and some weak singular behaviour in h&) is expected [6.7]. Whether it  is 
necessary to employ two order-parameter densities for describing criticality of the RPM and 
what consequences this would have, is not established, However, our intuitive feeling is 
that the RPM will fall into the Ising universality class. 

What should be more relevant to the experimentalist is the nature of criticality for 
an asymmetric ionic fluid, i.e. one in which the ions have different sizes and/or charges. 
No real fluid can correspond precisely to the RPM. Stell [7,25] has suggested that the 
presence of asymmetry could have a profound effect on the nature of criticality. When 
c++(T)  # c - - ( r )  the Omstein-Zernike equations have a rather different structure from in 
the RPM (see also 1141) and it is feasible that the renormalization group flow near the 
critical point could be of a different character from that in the RPM or in a neutral binary 
mixture. Stell and co-workers state that this should yield mean-field critical exponents for 
any asymmetric primitive models of ionic fluids. Indeed the simulation results of 1241 for 
a model of NaCl are interpreted as being more consistent with mean-field behaviour than 
those for the RPM. However, crossover to lsing behaviour could occur close to the critical 
point and not be picked up in the simulations. Should Stell be correct and the RPM found to 
lie in a different universality class from any other ionic model, this would be a remarkable 
result which would certainly have significant repercussions for real ionic fluids. The degree 
of anisotropy between anion-solvent and cation-solvent interactions would also be relevant 
for criticality. 

We are grateful to M E Fisher for suggesting that we calculate critical amplitudes and fc 
using the GMSA and to him and B Lee for forwarding the DH results in [19,20]. G 
Stell kindly brought [7,25] to our attention. R J n d C  acknowledges financial support from 
JNICT/Ciencia/PRAXIS XYI (Portugal). 
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